近日,微電子所健康電子中心黃成軍研究員、趙陽副研究員團隊在單細胞電學特性流式分析方法及高通量實時分析儀器研究方面取得重要進展。
單細胞電學特性生物傳感與分析技術(shù)為單細胞生物物理學研究提供了一個新維度。該技術(shù)已被證明在全血分析、腫瘤細胞分型和免疫細胞狀態(tài)評估方面具有重要的應(yīng)用潛力。但現(xiàn)有的電學檢測方法難以實現(xiàn)高通量實時性分析,嚴重限制了需要大量系統(tǒng)實驗的單細胞電學特性研究的開展。
面對這一難題,研究團隊提出了一種快速并行物理擬合求解器,僅需0.62 毫秒即可在線求解出單個細胞膜比電容和細胞質(zhì)電導率。與傳統(tǒng)求解器相比,在不損失準確度的前提下,速度提升了27000倍,且不需要任何數(shù)據(jù)預(yù)采集和預(yù)訓練過程,進一步實現(xiàn)了基于物理模型信息的實時阻抗流式細胞分析儀(piRT-IFC)(圖1)。該技術(shù)能在50分鐘內(nèi)實時表征高達100902個單細胞,具有高穩(wěn)定性、高通量、實時化和全流程自動化等特點。作為示范應(yīng)用,團隊對藥物處理后HL-60中性粒細胞脫粒現(xiàn)象這一典型的快速變化的生物過程進行了實時表征分析。與普遍采用的神經(jīng)網(wǎng)絡(luò)輔助加速方法對比研究表明,piRT-IFC具有速度快、準確度高和泛化能力強的優(yōu)勢,具備廣泛的應(yīng)用潛力。
近期,基于本研究成果的論文以“piRT-IFC: Physics-informed real-time impedance flow cytometry for the characterization of cellular intrinsic electrical properties”為題發(fā)表在國際著名期刊Microsystem and Nanoengineering上,微電子所博士研究生欒曉鳳為該文章的第一作者,微電子所黃成軍研究員、趙陽副研究員和中科院計算所支天高級工程師為該文章的共同通訊作者。(參見:https://www.nature.com/articles/s41378-023-00545-9)
近年來,該課題組面對單細胞物理特性檢測存在敏感機理不明和技術(shù)實現(xiàn)困難等關(guān)鍵技術(shù)瓶頸,開創(chuàng)性提出了基于微流控技術(shù)的“交叉壓縮通道”敏感新原理和單細胞電學模型,建立了基于微流控芯片的單細胞電學特性高通量定量檢測方法,檢測參數(shù)包括細胞膜比電容和胞漿電導率,通量比膜片鉗等常規(guī)方法高10000倍,并進一步成功研發(fā)實時高通量單細胞電學特性流式分析儀(圖2)。儀器入選中科院自主研制科學儀器名錄,與首都醫(yī)科大學宣武醫(yī)院、首都醫(yī)科大學附屬北京胸科醫(yī)院、中科院計算所等單位展開合作研究,成功用于腦卒中動物模型、癌癥病人樣本、藥物模型等領(lǐng)域的多種細胞的分析,為腫瘤/腦卒中等精準診斷、藥物篩選等提供了有力工具,成功發(fā)現(xiàn)新型標志物,驗證了相關(guān)藥物候選分子的作用、獲得授權(quán)專利。課題組的相關(guān)成果近年分別在傳感器領(lǐng)域知名的國際期刊Microsystem and Nanoengineering(2023年2篇)、Sensors and Actuators B: chemical(2022年)、Aging and Disease(2023年)、Biosensors and Bioelectronics(2018年),Biodesign and Manufacturing(2022年)等發(fā)表。并且,相關(guān)技術(shù)研究成果獲得2020年中國儀器儀表學會技術(shù)發(fā)明二等獎。
上述研究工作得到了科技部、國家自然科學基金委、北京市、中科院的相關(guān)項目支持。
圖1 實時阻抗流式細胞分析儀(piRT-IFC)原理樣機、核心微流控芯片、設(shè)備交互界面、典型結(jié)果和自動化實時數(shù)據(jù)處理流程
圖2. 基于微流控芯片技術(shù)的單細胞電學特性活體單細胞分析儀(左)及核心微流控芯片(右)
科研工作